Proteins MCQ's in biotechnology


 Hello friends, in today's article we see mcq's of proteins in biotechnology field. so let's begin

Proteins MCQ’s

Proteins MCQ's In biotechnology


1. All proteins contain the

(A)  Same 20 amino acids
(B)  Different amino acids

(C) 300 Amino acids occurring in nature

(D) Only a few amino acids

2. Proteins contain

(A)  Only L- α - amino acids

(B)  Only D-amino acids

(C)  DL-Amino acids

(D)  Both (A) and (B)

3. The optically inactive amino acid is

(A)  Glycine    

(B)  Serine

(C)  Threonine            

(D)  Valine

4. At neutral pH, a mixture of amino acids in solution would be predominantly:

(A)  Dipolar ions

(B)  Nonpolar molecules

(C)  Positive and monovalent

(D)  Hydrophobic

5. The true statement about solutions of amino acids at physiological pH is

(A)  All amino acids contain both positive and negative charges

(B)  All amino acids contain positively charged side chains

(C)  Some amino acids contain only positive charge

(D)  All amino acids contain negatively charged side chains

6. pH (isoelectric pH) of alanine is

(A)       6.02    

(B)       6.6

(C)       6.8      

(D)       7.2

7. Since the pK values for aspartic acid are 2.0, 3.9 and 10.0, it follows that the isoelectric (pH) is

(A)       3.0      

(B)       3.9

(C)       5.9      

(D)       6.0

8. Sulphur containing amino acid is

(A)  Methionine          

(B)  Leucine

(C)  Valine      

(D)  Asparagine

9. An example of sulphur containing amino acid is

(A) 2-Amino-3-mercaptopropanoic acid

(B) 2-Amino-3-methylbutanoic acid

(C) 2-Amino-3-hydroxypropanoic acid

(D) Amino acetic acid

10. All the following are sulphur containing amino acids found in proteins except

(A)  Cysteine  

(B)  Cystine

(C)  Methionine          

(D)  Threonine

11. An aromatic amino acid is

(A)  Lysine     

(B)  Tyrosine

(C)  Taurine    

(D)  Arginine

12. The functions of plasma albumin are

(A)  Osmosis   

(B)  Transport

(C)  Immunity

(D)  both (A )and (B)

13. Amino acid with side chain containing basic groups is

(A)       2-Amino 5-guanidovaleric acid

(B)       2-Pyrrolidine carboxylic acid

(C)       2-Amino 3-mercaptopropanoic acid

(D)       2-Amino propanoic acid

14. An example of α-amino acid not present in proteins but essential in mammalian metabolism is

(A)       3-Amino 3-hydroxypropanoic acid

(B)       2-Amino 3-hydroxybutanoic acid

(C)       2-Amino 4-mercaptobutanoic acid

(D)       2-Amino 3-mercaptopropanoic acid

15. An essential amino acid in man is

(A)  Aspartate

(B)  Tyrosine

(C)  Methionine          

(D)  Serine

16. Non essential amino acids

(A)  Are not components of tissue proteins
(B)  May be synthesized in the body from essential amino acids

(C)  Have no role in the metabolism

(D)  May be synthesized in the body in diseased states

17. Which one of the following is semi essential amino acid for humans?

(A)  Valine      

(B)  Arginine

(C)  Lysine      

(D)  Tyrosine

18. An example of polar amino acid is

(A)  Alanine    

(B)  Leucine

(C)  Arginine   

(D)  Valine

19. The amino acid with a nonpolar side chain is

(A)  Serine      

(B)  Valine

(C)  Asparagine           

(D)  Threonine

20. A ketogenic amino acid is

(A)  Valine      

(B)  Cysteine

(C)  Leucine    

(D)  Threonine

21. An amino acid that does not form an α-helix is

(A)  Valine      

(B)  Proline

(C)  Tyrosine  

(D)  Tryptophan

22. An amino acid not found in proteins is

(A)  β-Alanine            

(B)  Proline

(C)  Lysine      

(D)  Histidine

23. In mammalian tissues serine can be a biosynthetic precursor of

(A)  Methionine          

(B)  Glycine

(C)  Tryptophan          

(D)  Phenylalanine

24. A vasodilating compound is produced by the decarboxylation of the amino acid:

(A)  Arginine  

(B)  Aspartic acid

(C)  Glutamine            

(D)  Histidine

25. Biuret reaction is specific for

(A) -CONH-linkages

(B) -CSNH2 group

(C)  -(NH)NH2 group

(D)  All of these

26. Sakaguchi’s reaction is specific for

(A)  Tyrosine  

(B)  Proline

(C)  Arginine   

(D)  Cysteine

27. Million-Nasse’s reaction is specific for the amino acid:

(A)  Tryptophan          

(B)  Tyrosine

(C)  Phenylalanine      

(D)  Arginine

28. Ninhydrin with evolution of CO2 forms a blue complex with

(A)  Peptide bond       

(B)  α -Amino acids

(C)  Serotonin

(D)  Histamine

29. The most of the ultraviolet absorption of proteins above 240 nm is due to their content of

(A)  Tryptophan          

(B)  Aspartate

(C)  Glutamate            

(D)  Alanine

30. Which of the following is a dipeptide?

(A)  Anserine  

(B)  Glutathione

(C)  Glucagon

(D)  β -Lipoprotein

31. Which of the following is a tripeptide?

(A)  Anserine  

(B)  Oxytocin

(C)  Glutathione          

(D)  Kallidin

32. A peptide which acts as potent smooth muscle hypotensive agent is

(A)  Glutathione          

(B)  Bradykinin

(C)  Tryocidine           

(D)  Gramicidin-s

33. A tripeptide functioning as an important reducing agent in the tissues is

(A)  Bradykinin          

(B)  Kallidin

(C)  Tyrocidin

(D)  Glutathione

34. An example of metalloprotein is

(A)  Casein     

(B)  Ceruloplasmin

(C)  Gelatin     

(D)  Salmine

35. Carbonic anhydrase is an example of

(A)  Lipoprotein          

(B)  Phosphoprotein

(C)  Metalloprotein     

(D)  Chromoprotein

36. An example of chromoprotein is

(A)  Hemoglobin         

(B)  Sturine

(C)  Nuclein    

(D)  Gliadin

37. An example of scleroprotein is

(A)  Zein         

(B)  Keratin

(C)  Glutenin   

(D)  Ovoglobulin

38. Casein, the milk protein is

(A)  Nucleoprotein      

(B)  Chromoprotein

(C)  Phosphoprotein    

(D)  Glycoprotein

39. An example of phosphoprotein present in egg yolk is

(A)  Ovoalbumin        

(B)  Ovoglobulin

(C)  Ovovitellin           

(D)  Avidin

Read more carbohydrates MCQ's

40. A simple protein found in the nucleoproteins of the sperm is

(A)  Prolamine            

(B)  Protamine

(C)  Glutelin    

(D)  Globulin

41. Histones are

(A)  Identical to protamine

(B)  Proteins rich in lysine and arginine

(C)  Proteins with high molecular weight

(D)  Insoluble in water and very dilute acids

42. The protein present in hair is

(A)  Keratin    

(B)  Elastin

(C)  Myosin    

(D)  Tropocollagen

43. The amino acid from which synthesis of the protein of hair keratin takes place is

(A)  Alanine    

(B)  Methionine

(C)  Proline     

(D)  Hydroxyproline

44. In one molecule of albumin the number of amino acids is

(A) 510           

(B) 590

(C) 610           

(D) 650

45. Plasma proteins which contain more than 4% hexosamine are

(A)  Microglobulins    

(B)  Glycoproteins

(C)  Mucoproteins       

(D)  Orosomucoids

46. After  releasing  O2  at  the  tissues, hemoglobin transports

(A)  CO2 and protons to the lungs

(B)  O2 to the lungs

(C)  CO2 and protons to the tissue

(D)  Nutrients

47. Ehlers-Danlos syndrome characterized by hypermobile joints and skin abnormalities is due to

(A)  Abnormality in gene for procollagen

(B)  Deficiency of lysyl oxidase

(C)  Deficiency of prolyl hydroxylase

(D)  Deficiency of lysyl hydroxylase

48. Proteins are soluble in

(A)  Anhydrous acetone

(B)  Aqueous alcohol

(C)  Anhydrous alcohol

(D) Benzene

49. A cereal protein soluble in 70% alcohol but insoluble in water or salt solution is

(A)  Glutelin   

(B)  Protamine

(C)  Albumin  

(D)  Gliadin

50. Many globular proteins are stable insolution inspite they lack in

(A)  Disulphide bonds

(B)  Hydrogen bonds

(C)  Salt bonds            

(D)  Non polar bonds

51. The hydrogen bonds between peptide linkages of a protein molecules are interfered by

(A)  Guanidine            

(B)  Uric acid

(C)  Oxalic acid          

(D)  Salicylic acid

52. Globular proteins have completely folded, coiled polypeptide chain and the axial ratio (ratio of length to breadth) is

(A)  Less than 10 and generally not greater than 3-4

(B)  Generally 10

(C)  Greater than 10 and generally 20

(D)  Greater than 10

53. Fibrous proteins have axial ratio

(A)  Less than 10

(B)  Less than 10 and generally not greater than 3-4

(C)  Generally 10

(D)  Greater than 10

54. Each turn of α -helix contains the amino acid residues (number):

(A)       3.6      

(B)       3.0

(C)       4.2      

(D)       4.5

55. Distance traveled per turn of α−helix in nm is

(A)       0.53    

(B)       0.54

(C)       0.44    

(D)       0.48

56. Along the α-helix each amino acid residue advances in nm by

(A)       0.15    

(B)       0.10

(C)       0.12    

(D)       0.20

57. The number of helices present in a collagen molecule is

(A)       1         

(B)       2

(C)       3         

(D)       4

58. In proteins the α-helix and β-pleated sheet are examples of

(A)  Primary structure

(B)  Secondary structure

(C)  Tertiary structure

(D)  Quaternary structure

59. The a-helix of proteins is

(A)  A pleated structure

(B)  Made periodic by disulphide bridges

(C)  A non-periodic structure

(D)  Stabilised by hydrogen bonds between NH and CO groups of the main chain

60. At the lowest energy level α-helix of polypeptide chain is stabilised

(A)  By hydrogen bonds formed between the H of peptide N and the carbonyl O of the residue
(B)  Disulphide bonds

(C)  Non polar bonds

(D)  Ester bonds

61. Both α-helix and β-pleated sheet conformation of proteins were proposed by

(A)  Watson and Crick
(B)  Pauling and Corey

(C)  Waugh and King

(D)  Y.S.Rao

62. The primary structure of fibroin, the principal protein of silk worm fibres consists almost entirely of

(A)  Glycine    

(B)  Aspartate

(C)  Keratin     

(D)  Tryptophan

63. Tertiary structure of a protein describes

(A)  The order of amino acids
(B)  Location of disulphide bonds

(C)  Loop regions of proteins

(D)  The ways of protein folding

64. In a protein molecule the disulphide bondis not broken by

(A)  Reduction
(B)  Oxidation

(C)  Denaturation

(D)  X-ray diffraction

65. The technique for purification of proteins that can be made specific for a given protein is

(A)  Gel filtration chromotography

(B)  Ion exchange chromatography

(C)  Electrophoresis

(D)  Affinity chromatography

66. Denaturation of proteins results in

(A)  Disruption of primary structure

(B)  Breakdown of peptide bonds

(C)  Destruction of hydrogen bonds

(D)  Irreversible changes in the molecule

67. Ceruloplasmin is

(A)  α1-globulin           

(B)  α2-globulin

(C)  β-globulin            

(D)  None of these

68. The lipoprotein with the fastest electrophoretic mobility and the lowest triglyceride content is

(A)  Chylomicron       

(B)  VLDL

(C)  IDL          

(D)  HDL

69. The lipoprotein associated with activation of LCAT is

(A)  HDL        

(B)  LDL

(C)  VLDL      

(D)  IDL

70. The apolipoprotein which acts as activator of LCAT is

(A)  A-I           

(B)  A-IV

(C)  C-II

(D)  D

71. The apolipoprotein which acts as actiator of extrahepatic lipoprotein is

(A)  Apo-A     

(B)  Apo-B

(C)  Apo-C      

(D)  Apo-D

72. The apolipoprotein which forms the integral component of chylomicron is

(A)  B-100      

(B)  B-48

(C)  C  

(D)  D

73. The apolipoprotein which from the integral component of VLDL is

(A)  B-100      

(B)  B-48

(C)  A

(D)  D

74. The apolipoprotein which acts as ligand for LDL receptor is

(A)  B-48        

(B)  B-100

(C)  A

(D)  C

75. Serum LDL has been found to be increased in

(A)  Obstructive jaundice

(B)  Hepatic jaundice

(C)  Hemolytic jaundice

(D)  Malabsorption syndrome

76. A lipoprotein associated with high incidence of coronary atherosclerosis is

(A)  LDL         

(B)  VLDL

(C)  IDL          

(D)  HDL

77. A lipoprotein inversely related to the incidence of coronary artherosclerosis is

(A) VLDL       

(B)  IDL

(C) LDL          

(D)  HDL

78. The primary biochemical lesion in homozygote with familial hypercholesterolemia (type IIa) is

(A) Loss of feed back inhibition of HMG reductase

(B)  Loss of apolipoprotein B

(C) Increased production of LDL from VLDL

(D) Functional deficiency of plasma membrane receptors for LDL

79. In abetalipoproteinemia, the biochemical defect is in

(A) Apo-B synthesis

(B) Lipprotein lipase activity

(C) Cholesterol ester hydrolase

(D) LCAT activity

80. Familial hypertriaacylglycerolemia is associated with

(A) Over production of VLDL

(B) Increased LDL concentration

(C) Increased HDL concentration

(D) Slow clearance of chylomicrons

81. For synthesis of prostaglandins, the essential fatty acids give rise to a fatty acid containing

(A)       12 carbon atoms

(B)       16 carbon atoms

(C)       20 carbon atoms

(D)       24 carbon atoms

82. All active prostaglandins have at least one double bond between positions

(A)       7 and 8           

(B)       10 and 11

(C)       13 and 14       

(D)       16 and 17

83. Normal range of plasma total phospholipids is

(A)       0.2-0.6 mmol/L           

(B)       0.9-2.0 mmol/L

(C)       1.8-5.8 mmol/L

(D)       2.8-5.3 mmol/L

84. HDL2 have the density in the range of

(A)       1.006-1.019    

(B)       1.019-1.032

(C)       1.032-1.063    

(D)       1.063-1.125

85.  β-lipoproteins have the density in the range of

(A)       0.95-1.006      

(B)       1.006-1.019

(C)       1.019-1.063    

(D)       1.063-1.125

86. IDL have the density in the range of

(A)       0.95-1.006      

(B)       1.006-1.019

(C)       1.019-1.032    

(D)       1.032-1.163

87. Aspirin inhibits the activity of the enzyme:

(A)  Lipoxygenase      

(B)  Cyclooxygenase

(C)  Phospholipae A1

(D)  Phospholipase A2

88. A ’suicide enzyme’ is

(A)  Cycloxygenase    

(B)  Lipooxygenase

(C)  Phospholipase A1 

(D)  Phospholipase A2

89. In  adipose  tissue  prostaglandins decrease

(A)  Lipogenesis         

(B)  Lipolysis

(C)  Gluconeogenesis

(D)  Glycogenolysis

90. The optimal pH for the enzyme pepsin is

(A)       1.0-2.0            

(B)       4.0-5.0

(C)       5.2- 6.0           

(D)       5.8-6.2

91. Pepsinogen is converted to active pepsin by

(A)  HCl

(B)  Bile salts

(C)  Ca++         

(D)  Enterokinase

92. The optimal pH for the enzyme rennin is

(A)       2.0      

(B)       4.0

(C)       8.0      

(D)       6.0

93. The optimal pH for the enzyme trypsin is

(A)       1.0-2.0            

(B)       2.0-4.0

(C)       5.2-6.2            

(D)       5.8-6.2

94. The optimal pH for the enzyme chymotrypsin is

(A)       2.0      

(B)       4.0

(C)       6.0      

(D)       8.0

95. Trypsinogen is converted to active trypsin by

(A)  Enterokinase        

(B)  Bile salts

(C)  HCl

(D)  Mg++

96. Pepsin acts on denatured proteins to produce

(A)  Proteoses and peptones

(B)  Polypeptides

(C)  Peptides

(D)  Dipeptides

97. Renin converts casein to paracasein in presence of

(A)  Ca++         

(B)  Mg++

(C)  Na+          

(D)  K+

98. An expopeptidase is

(A)  Trypsin    

(B)  Chymotrypsin

(C)  Elastase    

(D)  Elastase

99. The enzyme trypsin is specific for peptide bonds of

(A)  Basic amino acids

(B)  Acidic amino acids

(C)  Aromatic amino acids

(D)  Next to small amino acid residues

100. Chymotrypsin is specific for peptide bonds containing

(A)  Uncharged amino acid residues

(B)  Acidic amino acids

(C)  Basic amino acid

(D)  Small amino acid residues

101. The end product of protein digestion in G.I.T. is

(A)  Dipeptide

(B)  Tripeptide

(C)  Polypeptide          

(D)  Amino acid

102. Natural L-isomers of amino acids are absorbed from intestine by

(A)  Passive diffusion

(B)  Simple diffusion

(C)  Faciliated diffusion

(D)  Active process

103. Abnormalities of blood clotting are

(A)  Haemophilia        

(B)  Christmas disease

(C)  Gout        

(D)  Both (A) and (B)

104. An important reaction for the synthesis of amino acid from carbohydrate intermediates is transamination which requires the cofactor:

(A)  Thiamin   

(B)  Riboflavin

(C)  Niacin      

(D)  Pyridoxal phosphate

105. The main sites for oxidative deamination are

(A)  Liver and kidney

(B)  Skin and pancreas

(C)  Intestine and mammary gland

(D)  Lung and spleen

106. A positive nitrogen balance occurs

(A)  In growing infant

(B)  Following surgery

(C)  In advanced cancer

(D)  In kwashiorkar

107. The main site of urea synthesis in mammals is

(A)  Liver        

(B)  Skin

(C)  Intestine   

(D)  Kidney

108. The enzymes of urea synthesis are found in

(A)  Mitochondria only

(B)  Cytosol only

(C)  Both mitochondria and cytosol

(D)  Nucleus

109. The number of ATP required for urea synthesis is

(A)       0         

(B)       1

(C)       2         

(D)       3

110. Most of the ammonia released from L-α-amino acids reflects the coupled action of transaminase and

(A)  L-glutamate dehydrogenase

(B)  L-amino acid oxidase

(C)  Histidase

(D)  Serine dehydratase

111. In urea synthesis, the amino acid functioning solely as an enzyme activator:

(A)  N-acetyl glutamate

(B)  Ornithine

(C)  Citrulline  

(D)  Arginine

112. The enzyme carbamoyl phosphate synthetase requires

(A)  Mg++        

(B)  Ca++

(C)  Na+          

(D)  K+

113. Control of urea cycle involves the enzyme:

(A)  Carbamoyl phosphate synthetase

(B)  Ornithine transcarbamoylase

(C)  Argininosuccinase

(D)  Arginase

114.Transfer of the carbamoyl moiety of carbamoyl phosphate to ornithine is catalysed by a liver mitochondrial enzyme:

(A)  Carbamoyl phosphate synthetase

(B)  Ornithine transcarbamoylase

(C)  N-acetyl glutamate synthetase

(D)  N-acetyl glutamate hydrolase

115. A compound serving a link between citric acid cycle and urea cycle is

(A)  Malate     

(B)  Citrate

(C)  Succinate

(D)  Fumarate

116. The 2 nitrogen atoms in urea are contributed by

(A)  Ammonia and glutamate
(B)  Glutamine and glutamate

(C)  Ammonia and aspartate

(D)  Ammonia and alanine

117. In carcinoid syndrome the argentaffin tissue of the abdominal cavity overproduce

(A)  Serotonin

(B)  Histamine

(C)  Tryptamine          

(D)  Tyrosine

118. Tryptophan could be considered as precursor of

(A)  Melanotonin        

(B)  Thyroid hormones

(C)  Melanin   

(D)  Epinephrine

119. Conversion of tyrosine to dihydroxyphenylalanine is catalysed by tyrosine hydroxylase which requires

(A)  NAD        

(B)  FAD

(C)  ATP         

(D)  Tetrahydrobiopterin

120. The rate limiting step in the biosynthesis of catecholamines is

(A)  Decarboxylation of dihydroxyphenylalanine

(B)  Hydroxylation of phenylalanine

(C)  Hydroxylation of tyrosine

(D)  Oxidation of dopamine

121. The enzyme dopamine β-oxidase which catalyses conversion of dopamine to norepinephrine requires

(A)  Vitamin A            

(B)  Vitamin C

(C)  Vitamin E            

(D)  Vitamin B12

122. In humans the sulphur of methionine and cysteine is excreted mainly as

(A)  Ethereal sulphate
(B)  Inorganic sulphate

(C)  Sulphites

(D)  Thioorganic compound

123. Small amount of urinary oxalates is contributed by the amino acid:

(A)  Glycine    

(B)  Tyrosine

(C)  Alanine    

(D)  Serine

124. The amino acid which detoxicated benzoic acid to form hippuric acid is

(A)  Glycine    

(B)  Alanine

(C)  Serine      

(D)  Glutamic acid

125. The amino acids involved in the synthesis of creatin are

(A)  Arginine, glycine, active methionine

(B)  Arginine, alanine, glycine

(C)  Glycine, lysine, methionine

(D)  Arginine, lysine, methionine

126. Chemical score of egg proteins is considered to be

(A)       100     

(B)       60

(C)       50       

(D)       40

127. Chemical score of milk proteins is

(A)       70       

(B)       65

(C)       60       

(D)       40

128. Chemical score of proteins of bengal gram is

(A)       70       

(B)       60

(C)       44       

(D)       42

129. Chemical score of protein gelatin is

(A)       0         

(B)       44

(C)       57       

(D)       60

130. Chemical score of protein zein is

(A)       0         

(B)       57

(C)       60       

(D)       70

131. Biological value of egg white protein is

(A)       94       

(B)       83

(C)       85       

(D)       77

132. Net protein utilisation of egg protein is

(A)       75%    

(B)       80%

(C)       91%    

(D)       72%

133. Net protein utilization of milk protein is

(A)       75%    

(B)       80%

(C)       86%    

(D)       91%

134. A limiting amino acid is an essential amino acid

(A)  That is most deficient in proteins

(B)  That is most excess in proteins

(C)  That which increases the growth

(D)  That which increases the weight gain

135. The limiting amino acid of rice is

(A)  Lysine     

(B)  Tryptophan

(C)  Phenylalanine      

(D)  Tyrosine

136. The limiting amino acid of fish proteins is

(A)  Tryptophan          

(B)  Cysteine

(C)  Lysine      

(D)  Threonine

137. Pulses are deficient in

(A)  Lysine     

(B)  Threonine

(C)  Methionine          

(D)  Tryptophan

138. A trace element deficient in the milk is

(A)  Magnesium          

(B)  Copper

(C)  Zinc         

(D)  Chloride

139. A conjugated protein present in the egg yolk is

(A)  Vitellin    

(B)  Livetin

(C)  Albuminoids        

(D)  Ovo-mucoid

140. The chief protein of cow’s milk is

(A)  Albumin  

(B)  Vitellin

(C)  Livetin     

(D)  Casein

141. A water soluble vitamin deficient in egg is

(A)  Thiamin   

(B)  Ribofalvin

(C)  Ascrobic acid       

(D)  Cobalamin

142. Pulses are rich in

(A)  Lysine     

(B)  Methionine

(C)  Tryptophan          

(D)  Phenylalanine

143. Milk is deficient in

(A)  Vitamin B1           

(B)  Vitamin B2

(C)  Sodium    

(D)  Potassium

144. Milk is deficient in

(A)  Calcium   

(B)  Iron

(C)  Sodium    

(D)  Potassium

145. When net protein utilization (NPU) is low, the requirements for proteins are

(A)  High        

(B)  Moderate

(C)  Low         

(D)  Supplementary

146. Protein content of human milk is about

(A)       1.4%   

(B)       2.4%

(C)       3.4%   

(D)       4.4%

147. Protein content of cow’s milk is about

(A)       2.5%   

(B)       3.5%

(C)       4.5%   

(D)       5.5%

148. Protein content of soyabean is about

(A)       30%    

(B)       40%

(C)       50%    

(D)       60%

149. Lipid content of egg white is

(A)       12%    

(B)       33%

(C)       10-11%           

(D)  Traces

150. The recommended daily allowance (RDA) of proteins for an adult man is

(A)       70 gms            

(B)       50 gms

(C)       40 gms            

(D)       30 gms

151. The basic amino acids are

(A)  Lysine     

(B)  Bile acids

(C)  Glycine    

(D)  Alanine

152. The daily caloric requirement for the normal adult female is about

(A)       1500   

(B)       2100

(C)       2500   

(D)       2900

153. In the total proteins, the percentage of albumin is about

(A)       20-40  

(B)       30-45

(C)       50-70  

(D)       80-90

154. In the total proteins percentage of α globulin is about

(A)       0.2-1.2%         

(B)       1.2-2.0%

(C)       2.4-4.4%         

(D)       5.0-10.0%

155. In the total proteins the percentage ofγ globulin is about

(A)       2.4-4.4%         

(B)       10.0-21.0%

(C)       6.1-10.1%       

(D)       1.2-2.0%

156. Most frequently the normal albumin globulin ratioratio (A : G) is

(A)       1.0 : 0.8          

(B)       1.5 : 1.0

(C)       2.0 : 1.0          

(D)       2.4 : 1.0

157. In Thymol turbidity test the protein involved is mainly

(A)       Albumin         

(B)  α1-Globulin

(C)       α2-Globulin     

(D)  β Globulin

158. In quaternary structure, subunits are linked by

(A) Peptide bonds       

(B)  Disulphide bonds

(C) Covalent bonds     

(D)  Non-covalent bonds

159. Molecular weight of human albumin is about

(A)       156,000          

(B)       90,000

(C)       69,000            

(D)       54,000

160. At isoelectric pH, an amino acid exists as

(A)  Anion      

(B)  Cation

(C)  Zwitterion            

(D)  None of these

161. A disulphide bond can be formed between

(A)  Two methionine residues

(B)  Two cysteine residues

(C)  A methionine and a cysteine residue

(D)  All of these

162. A coagulated protein is

(A)  Insoluble

(B)  Biologically non-functional

(C)  Unfolded

(D)  All of the above

163. At a pH below the isoelectric point, an amino acid exists as

(A)  Cation

(B)  Anion

(C)  Zwitterion

(D)  Undissociated molecule

164. An amino acid having a hydrophilic side chain is

(A)  Alanine    

(B)  Proline

(C)  Methionine          

(D)  Serine

165. An amino acid that does not take part in α helix formation is

(A)  Histidine  

(B)  Tyrosine

(C)  Proline     

(D)  Tryptophan

166. A protein rich in cysteine is

(A)  Collagen  

(B)  Keratin

(C)  Haemoglobin       

(D)  Gelatin

167. Primary structure of proteins can be determined by the use of

(A)  Electrophoresis    

(B)  Chromatography

(C)  Ninhydrin            

(D)  Sanger’s reagent

168. Electrostatic bonds can be formed between the side chains of

(A)  Alanine and leucine

(B)  Leucine and valine

(C)  Asparate and glutamate

(D)  Lysine and aspartate

169. Sanger’s reagent contains

(A)  Phenylisothiocyanate

(B)  Dansyl chloride

(C) 1-Fluoro-2, 4-dinitrobenzene

(D)  Ninhydrin

170. The most abundant protein in mammals is

(A)  Albumin  

(B)  Haemoglobin

(C)  Collagen  

(D)  Elastin

171. Folding of newly synthesized proteins is accelerated by

(A)  Protein disulphide isomerase

(B)  Prolyl cis-trans isomerise

(C)  Chaperonins

(D)  All of these

172. Primary structure of a protein is formed by

(A)  Hydrogen bonds

(B)  Peptide bonds

(C)  Disulphide bonds

(D)  All of these

173. α-Helix is formed by

(A)  Hydrogen bonds

(B)  Hydrophobic bonds

(C)  Electrostatic bonds

(D)  Disulphide bonds

174. Glutelins are present in

(A)  Milk         

(B)  Eggs

(C)  Meat        

(D)  Cereals

175. Aromatic amino acids can be detected by

(A)  Sakaguchi reaction
(B)  Millon-Nasse reaction

(C)  Hopkins-Cole reaction

(D)  Xanthoproteic reaction

176. Two amino groups are present in

(A)  Leucine   

(B)  Glutamate

(C)  Lysine      

(D)  Threonine

177. During denaturation of proteins, all of the following are disrupted except

(A)  Primary structure

(B)  Secondary structure

(C)  Tertiary structure

(D)  Quaternary structure

178. All the following are branched chain amino acids except

(A)  Isoleucine            

(B)  Alanine

(C)  Leucine    

(D)  Valine

179. An -OH group is present in the side chain of

(A)  Serine      

(B)  Arginine

(C)  Lysine      

(D)  Proline

180. Edman’s reagent contains

(A)  Phenylisothiocyanate
(B) 1-Fluoro-2, 4-dinitrobenzene

(C)  Dansyl Chloride

(D)  tBOC azide

181. Edman’s reaction can be used to

(A)  Determine the number of tyrosine residues in a protein

(B)  Determine the number of aromatic amino acid residues in a protein

(C)  Determine the amino acid sequence of a protein

(D)  Hydrolyse the peptide bonds in a protein

182. Inherited deficiency of β−glucosidase causes

(A)  Tay-Sachs disease

(B)  Metachromatic leukodystrophy

(C)  Gaucher’s disease

(D)  Multiple sclerosis

183. Tay-Sachs disease results from inherited deficiency of

(A)  Arylsulphatase A

(B)  Hexosaminidase A

(C)  Sphingomyelinase

(D)  Ceramidase

184. The largest alpolipoprotein is

(A)  Apo E      

(B)  Apo B-48

(C)  Apo B-100           

(D)  Apo A-I

185. Apolipoprotein B-100 is synthesised in

(A)  Adipose tissue     

(B)  Liver

(C)  Intestine   

(D)  Liver and intestine

186. Apolipoprotein B-48 is synthesized in

(A)  Adipose tissue     

(B)  Liver

(C)  Intestine   

(D)  Liver and intestine

187. Apolipoproteins A-I and A-II are present in

(A)  LDL only

(B)  LDL and VLDL

(C)  HDL only

(D)  HDL and chylomicrons

188. Apolipoprotein B-48 is present in

(A)  Chylomicrons      

(B)  VLDL

(C)  LDL         

(D)  HDL

189. Apolipoprotein B-100 is present in

(A)  Chylomicrons      

(B)  VLDL only

(C)  LDL only

(D)  VLDL and LDL

190. Apolipoproteins C-I, C-II and C-III are present in

(A)  Chylomicrons      

(B)  VLDL

(C)  HDL        

(D)  All of these

191. Apolipoprotiens C-I, C-II and C-III are present in all of the following except

(A)  Chylomicrons      

(B)  VLDL

(C)  LDL         

(D)  HDL

192. Apolipoprotein A-I acts as

(A)  Enzyme activator

(B)  Ligand for receptor

(C)  Both (A) and (B)  

(D)  None of these

193. Apolipoprotien B-100 acts as

(A)  Enzyme activator

(B)  Ligand for receptor

(C)  Both (A) and (B)  

(D)  None of these

194. Apolipoprotein C-II is an activator of

(A)  Lecithin cholesterola acyl transferase

(B)  Phospholipase C

(C)  Extrahepatic lipoprotein lipase

(D)  Hepatic lipoprotein lipase

195. Nascent chylomicron receives apolipoproteins C and E from

(A)  VLDL remnant    

(B)  VLDL

(C)  LDL         

(D)  HDL

196. Terminal transferase

(A)  Removes nucleotides from 3’ end

(B)  Adds nucleotides at 3’ end

(C)  Removes nucleotides from 3’end

(D)  Adds nucleotides at 3’end

197. S1 nuclease hydrolyses

(A)  DNA of somatic cells

(B)  DNA of sperms

(C)  Any double stranded DNA

(D)  Any single stranded DNA

198. Positive nitrogen balance is seen in

(A)  Starvation

(B)  Wasting diseases

(C)  Growing age

(D)  Intestinal malabsorption

199. Alanine can be synthesized from

(A)  Glutamate and α-ketoglutarate

(B)  Pyruvate and glutamate

(C)  Pyruvate and α-ketoglutarate

(D)  Asparate and α-ketoglutarate

200. All of the following are required for synthesis of alanine except

(A)  Pyruvate  

(B)  α-ketoglutarate

(C)  Glutamate            

(D)  Pyridoxal phosphate

201. All of the following statements about aspartate are true except

(A)  It is non-essential amino acid
(B)  It is a dicarboxylic amino acid

(C)  It can be synthesized from pyruvate and glutamate

(D)  It can be converted into asparagine

202. Glycine can be synthesized from

(A)  Serine      

(B)  Choline

(C)  Betaine    

(D)  All of these

203. All of the following are required for synthesis of glutamine except

(A)  Glutamate

(B)  Ammonia

(C)  Pyridoxal phosphate

(D)  ATP

204. A coenzyme required for the synthesis of glycine from serine is

(A)  ATP

(B)  Pyridoxal phosphate

(C)  Tetrahydrofolate

(D)  NAD

205. All of the following statements about proline are true except

(A)  It is an imino acid

(B)  It can be synthesized from glutamate

(C)  It can be catabolised to glutamate

(D)  Free proline can be hydroxylated to hydroxyproline

206. A protein rich in hydroxyproline is

(A)  Prolamin  

(B)  Procollagen

(C)  Collagen  

(D)  Proinsulin

207. All the following statement about hydroxyproline are true except

(A)  There is no codon for hydroxyproline
(B)  It is present in large amounts in collagen

(C)  Free proline cannot be hydroxylated to hydroxyproline

(D)  Hydroxylation of proline residues is catalysed by a dioxygenase

208. All of the following are required for hydroxylation of proline residues except

(A)  Ascorbic acid      

(B)  Glutamate

(C)  Ferrous ions         

(D)  Molecular oxygen

209. Cysteine can be synthesized from methionine and

(A)  Serine      

(B)  Homoserine

(C)  Homocysteine      

(D)  Threonine

210. Methionine is synthesized in human body from

(A)  Cysteine and homoserine

(B)  Homocysteine and serine

(C)  Cysteine and serine

(D)  None of these

211. Hydroxylation of phenylalanine requires all of the following except

(A)  Phenylalanine hydroxylase

(B)  Tetrahydrobiopterin

(C)  NADH

(D)  Molecular oxygen

212. Non-Protein amino acids are

(A)  Ornithine
(B)  β-alanine

(C)  γ-amino butyric acid

(D)  All of these

213. The amino acid that undergoes oxidative deamination at significant rate is

(A)  Alanine    

(B)  Aspartate

(C)  Glutamate            

(D)  Glutamine

214. Allosteric inhibitor of glutamate dehydrogenase is

(A)  ATP         

(B)  ADP

(C)  AMP        

(D)  GMP

215. Allsoteric activator of glutamate dehydrogenase is

(A)  ATP         

(B)  GTP

(C)  ADP and GDP     

(D)  AMP and GMP

216. Free ammonia is released during

(A)  Oxidative deamination of glutamate

(B)  Catabolism of purines

(C)  Catabolism of pyrimidines

(D)  All of these

217. An organ which is extremely sensitive to ammonia toxicity is

(A)  Liver        

(B)  Brain

(C)  Kidney     

(D)  Heart

218. Ammonia is transported from muscles to liver mainly in the form of

(A)  Free ammonia      

(B)  Glutamine

(C)  Asparagine           

(D)  Alanine

219. The major site of urea synthesis is

(A)  Brain       

(B)  Kidneys

(C)  Liver        

(D)  Muscles

220. Carbamoyl phosphate required for urea synthesis is formed in

(A)  Cytosol    

(B)  Mitochondria

(C)  Both (A) and (B)  

(D)  None of these

221. Cytosolic and mitochondrial carbamoyl phosphate synthetase have the following similarity:

(A)  Both use ammonia as a substance
(B)  Both provide carbamoyl phosphate for urea synthesis

(C)  Both require N-acetylglutamate as an activator

(D)  Both are allosteric enzymes

222. The following enzyme of urea cycle is present in cytosol:

(A)  Argininosuccinic acid synthetase

(B)  Argininosuccinase

(C)  Arginase

(D)  All of these

223. ATP is required in following reactions of urea cycle:

(A)  Synthesis of carbamoyl phosphate and citrulline

(B)  Synthesis of citrulline and argininosuccinate

(C)  Synthesis of argininosuccinate and arginine

(D)  Synthesis of carbamoyl phosphate and argininosuccinate

224. Daily excretion of nitrogen by an adult man is about

(A)       15-20 mg        

(B)       1.5-2 gm

(C)       5-10 gm          

(D)       15-20 gm

225. Maple syrup urine diseases is an inborn error of metabolism of

(A)  Sulphur-containing amino acids

(B)  Aromatic amino acids

(C)  Branched chain amino acids

(D)  Dicarboxylic amino acids

226. Cystinuria results from inability to

(A)  Metabolise cysteine
(B)  Convert cystine into cysteine

(C)  Incorporate cysteine into proteins

(D)  Reabsorb cystine in renal tubules

227. The defective enzyme in histidinemia is

(A)  Histidine carboxylase

(B)  Histidine decarboxylase

(C)  Histidase

(D)  Histidine oxidase

228. All the following statements about phenylketonuria are correct except

(A)  Phenylalanine cannot be converted into tyrosine

(B)  Urinary excretion of phenylpyruvate and phenyllactate is increased

(C)  It can be controlled by giving a low phenylalanine diet

(D)  It leads to decreased synthesis of thyroid hormones, catecholamines and melanin

229. All the following statements about albinism are correct except

(A)  Tyrosine hydroxylase (tyrosinase) is absent or deficient in melanocytes

(B)  Skin is hypopigmented

(C)  It results in mental retardation

(D)  Eyes are hypopigmented

230. Glycine is not required for the formation of

(A)  Taurocholic acid  

(B)  Creatine

(C)  Purines     

(D)  Pyrimidines

231. Histamine is formed from histidine by

(A)  Deamination        

(B)  Dehydrogenation

(C)  Decarboxylation  

(D)  Carboxylation

232. DOPA is an intermediate in the synthesis of

(A)  Thyroid hormones

(B)  Catecholamines

(C)  Melanin

(D)  Catecholamines and melanin

233. All the following statements about pepsin are correct except

(A)  It is smaller than pepsinogen

(B)  It is formed by the action of HCl on its precursor

(C)  Its optimum pH is 1.0-2.0

(D)  It hydrolyses the C-terminal and N-terminal peptide bonds of proteins

234. Pancreatic juice contains the precursors of all of the following except

(A)  Trypsin    

(B)  Chymotrypsin

(C)  Carboxypeptidase

(D)  Aminopeptidase

235. The only correct statement about chymotrypsin is

(A)  It is formed from trypsin

(B)  Carboxypeptidase converts trypsin into chymotrypsin

(C)  Its optimum pH is around 7

(D)  It hydrolyses peptide bonds involving basic amino acids

236. The portion of the antigen molecule which is recognized by antibody is known as

(A)  Hapten     

(B)  Epitope

(C)  Complement        

(D)  Variable region

237. All the following statements about haptens are true except

(A)  They have high molecular weights

(B)  They cannot elicit an immune response by themselves

(C)  When combined with some other large molecule, they can elicit an immune response

(D)  Once an immune response develops, the free hapten can be recognized by the antibody

238. Antigens and haptens have the following similarity:

(A) They have high molecular weights
(B) They can elicit immune response by themselves

(C) They can elicit an immune response only inassociation with some other large molecule

(D)  Once an immune response develops, free antigen and free hapten can be recognized by the antibody

239. The minimum number of polypeptide chains in an immunoglobulin is

(A)  Two         

(B)  Four

(C) Five          

(D)  Six

240. Light chains of immunoglobulins are of following types:

(A) Alpha and kappa

(B)  Alpha and gamma

(C) Lambda and delta

(D)  Kappa and lambda

241. Immunoglobulins are classified on the basis of

(A) Type of light chains
(B)  Type of heavy chains

(C) Types of light and heavy chains

(D)  Molecular weight

242. The molecular weight of light chains is

(A)       10,000-15,000

(B)       20,000-25,000

(C)       25,000-50,000

(D)       50,000-75,000

243. The molecular weight of heavy chains is

(A)       20,000-25,000

(B)       25,000-50,000

(C)       50,000-70,000

(D)       70,000-1,00,000

244. Secretory component is present in

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  All of these

245. The variable region of light chains is the

(A)  N-terminal quarter

(B)  N-terminal half

(C)  C-terminal quarter

(D)  C-terminal half

246. The variable region of light chain is the

(A)  N-terminal quarter

(B)  N-terminal half

(C)  C-terminal quarter

(D)  C-terminal half

247. The variable region of light chains has

(A)  One hypervariable region
(B)  Two hypervariable regions

(C)  Three hypervariable regions

(D)  Four hypervariable regions

248. The variable region of heavy chains has

(A)  One hypervariable region

(B)  Two hypervariable regions

(C)  Three hypervariable regions

(D)  Four hypervariable regions

249. The most abundant immunoglobulin in plasma is

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  IgD

250. The largest immunoglobulin is

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  IgD

251. The plasma concentration of IgA is

(A)       1-5 mg/dl        

(B)       40-200 mg/dl

(C)       60-500 mg/dl  

(D)       700-1,500 mg/dl

252. An immunoglobulin found in exocrine secretions is

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  IgE

253. Allergic reactions are mediated by

(A)  IgA          

(B)  IgG

(C)  IgD          

(D)  IgE

254. An immunoglobulin which can cross the placental barrier is

(A)  IgA          

(B)  IgM

(C)  IgD          

(D)  None of these

255. IgM possesses

(A)  Two light chains and two heavy chains
(B)  Four light chains and four heavy chains

(C)  Six light chains and six heavy chains

(D)  Ten light chains and ten heavy chains

256. The immunoglobulin having the longest half-life is

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  IgE

257. The half-life of IgG is

(A)       2-3 days          

(B)       5-6 days

(C)       8-10 days        

(D)       20-25 days

258. Recognition of antigen is the function of

(A)  Variable region of light chains

(B)  Variable regions of light and heavy chains

(C)  Constant region of heavy chains

(D)  Constant regions of light and heavy chains

259. The effector function of antibody is performed by

(A)  Variable region of light chains
(B)  Constant region of heavy chains

(C)  Variable regions of light and heavy chains

(D)  Constant regions of light and heavy chains

260. Complement system can be activated by binding of antigen to

(A)  IgA          

(B)  IgD

(C)  IgE           

(D)  IgM

261. C1 component of classical complement pathway is made up of

(A)  Complements 1q and 1r
(B)  Complements 1q and 1s

(C)  Complements 1r and 1s

(D)  Complements 1q, 1r and 1s

262. The components of complement system are activated by

(A)  Microsomal hydroxylation

(B)  Phosphorylation

(C)  Glycosylation

(D)  Proteloysis

263. The component system forms a membrane attack complex made up of

(A)  Complements 1q, 1r and 1s
(B)  Complements 1, 2, 3 and 4

(C)  Complements 5b, 6, 7 and 8

(D)  Factors B and D

264. Factors B and D are required in

(A)  The classical pathway of complement fixation

(B)  The alternate complement pathway

(C)  Both (A) and (B)

(D)  None of these

265. The alternate complement pathway doesn’t involve

(A)  Antigen-antibody complex

(B)  Complement 3

(C)  Factors B and D

(D)  Membrane attack unit

266. Antibody diversity arises from

(A)  Gene amplification

(B)  Gene re-arrangement

(C)  Alternative splicing

(D)  All of these

267. A light chain gene is constructed from the following segments:

(A)  Variable and constant segments
(B)  Variable, joining and constant segments

(C)  Variable, diversity and constant segments

(D)  Variable, joining, diversity and constant segments

268. In metabolic point of view, amino acids are classified as

(A)  Glycogenic
(B)  Ketogenic

(C)  Glycogenic or Ketogenic

(D)  All of these

269. Diversity segments are present in

(A)  Light chain genes
(B)  Heavy chain genes

(C)  Light and heavy chain genes

(D)  None of these

270. Constant segments of heavy chains are of

(A)  Five types            

(B)  Six types

(C)  Seven types         

(D)  Eight types

271. Gamma heavy chains are of

(A)  Two types            

(B)  Three types

(C)  Four types            

(D)  Five types

272. Gamma heavy chains are present in

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  IgD

273. Heavy chains in IgD are of following type:

(A)  Alpha      

(B)  Gamma

(C)  Delta

(D)  Epsilon

274. On exposure to any antigen, the first antibody to be formed is of the following class:

(A)  IgA          

(B)  IgG

(C)  IgM          

(D)  IgE

275. Constant segment genes of heavy chains are present in a cluster in which the first gene on side is

(A)  Alpha      

(B)  Gamma

(C)  Delta        

(D)  None of these

276. Cell-mediated immunity is the function of

(A)  B lymphocytes    

(B)  T lymphocytes

(C)  Plasma cells         

(D)  Basophils

277. The most abundant T cells are

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  Suppressor T cells

(D)  Memory T cells

278. T cells can recognise

(A)  Free antigens

(B)  Antigens bound to cells

(C)  Antigens bound to antibodies

(D)  Antigens bound to MHC proteins

279. MHC proteins are unique to

(A)  Each cell  

(B)  Each organ

(C)  Each individual    

(D)  Each species

280. MHC class I proteins are present on the surface of

(A)  B cells only         

(B)  T cells only

(C)  Macrophages only

(D)  All cells

281. MHC class I proteins, in conjunction with antigens are recognised by

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  Suppressor T cells

(D)  Memory T cells

282. MHC class II proteins are present on the surface of

(A)  All cells

(B)  B lymphocytes only

(C)  Macrophages only

(D)  Macrophages and B lymphocytes

283. MHC Class II proteins, in conjunction with antigens, are recognised by

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  Suppressor T cells

(D)  Memory T cells

284. CD 8 is a transmembrane glycoprotein present in

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  Suppressor T cells

(D)  Memory T cells

285. CD 4 is a transmembrane glycoprotein present in

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  Suppressor T cells

(D)  Memory T cells

286. CD 3 complex and p 56lck proteins are present in

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  Both (A) and (B)  

(D)  None of these

287. Cytotoxic T cells release

(A)  Perforins

(B)  Interleukins

(C)  Colony stimulating factors

(D)  Tumour necrosis factor

288. Helper T cells release

(A)  Interleukins

(B)  Colony stimulating factors

(C)  Tumour necrosis factor

(D)  All of these

289. MHC Class III proteins include

(A)  Immunoglobulins

(B)  Components of complement system

(C)  T cells receptors

(D)  CD4 and CD8 proteins

290. Human immunodeficiency virus destroys

(A)  Cytotoxic T cells

(B)  Helper T cells

(C)  B cells      

(D)  Plasma cells

291. In allergic diseases, the concentration of the following is increased in plasma:

(A)  IgA          

(B)  IgG

(C)  IgD          

(D)  IgE

292. IgE has a tendency to attach to

(A)  Basophils

(B)  Mast cells

(C)  Both (A) and (B)  

(D)  None of these

293. Reaginic antibody is

(A)  IgA          

(B)  IgG

(C)  IgD          

(D)  IgE

294. Active immunity can be produced by administration of

(A)  Killed bacteria or viruses

(B)  Live attenuated bacteria or viruses

(C)  Toxoids

(D)  All of these

295. Passive immunity can be produced by administration of

(A)  Pure antigens
(B)  Immunoglobulins

(C)  Toxoids

(D)  Killed bacteria or viruses

296. Helper T cells release all the following except

(A)  Interleukins

(B)  Colony stimulating factors

(C)  Perforins

(D)  Tumour necrosis factor

297. IgG cleaved by papain into

(A)  Two light and two heavy chains
(B)  Two Fab and one Fc fragments

(C)  Two pairs of one light and one heavy chain each

(D)  One Fab and two Fc fragments

298. Bence-Jones protein is

(A)  An immunoglobulin
(B)  A dimer of heavy chains

(C)  A dimer of light chains

(D)  A dimer of one heavy and one light chains

299. Bence-Jones proteins possess all the following properties except

(A)  They are dimers of light chains
(B)  Their amino acids sequences are identical

(C)  Their N-terminal halves have variable amino acid sequences

(D)  Their C-terminal halves have constant amino acid sequences

300. A Zwitterion is

(A)  Positive ion          

(B)  Negative ion

(C)  Both (A) and (C)

(D)  None of these

301. After accounting for SDA, the net gain of energy from 25 gm of proteins is about

(A)       70 kcal            

(B)       100 kcal

(C)       130 kcal          

(D)       200 kcal

302. After accounting for SDA, the net gain of energy from 25 gm of carbohydrates is about

(A)       70 kcal            

(B)       95 kcal

(C)       100 kcal          

(D)       105 kcal

303. After accounting for SDA, the net gain of energy from 100 gm of fat is about

(A)       600 kcal          

(B)       780 kcal

(C)       900 kcal          

(D)       1020 kcal

304. If proteins, carbohydrates and fats are consumed together:

(A)  The total SDA is the sum of individual SDAs of proteins, carbohydrates and fats

(B)  The total SDA is more than the sum of individual SDAs of proteins, carbohydrates and fats

(C)  Carbohydrates and fats lower the SDA of proteins

(D)  Proteins raise the SDA of carbohydrates and fats

305. After calculating the energy requirement of a person:

(A) 10% kcal are subtracted on account of SDA

(B) 10% kcal are added on account of SDA

(C) 20% kcal are subtracted on account of SDA

(D) 20% kcal are subtracted on account of SDA

306. The recommended energy intake for an adult sedentary Indian man is

(A)       1,900 kcal/day            

(B)       2,400 kcal/day

(C)       2,700 kcal/day            

(D)       3,000 kcal/day

307. The recommended energy intake for an adult sedentary Indian woman is

(A)       1,900 kcal/day            

(B)       2,200 kcal/day

(C)       2,400 kcal/day            

(D)       2,700 kcal/day

308. During pregnancy, the following should be added to the calculated energy requirement:

(A)       300 kcal/day   

(B)       500 kcal/day

(C)       700 kcal/day   

(D)       900 kcal/day

309. During first six months of lactation, the following increment in energy intake is recommended:

(A)       200 kcal/day   

(B)       300 kcal/day

(C)       550 kcal/day   

(D)       1,000 kcal/day

310. The proximate principles of diet are

(A)  Vitamins and minerals

(B)  Proteins

(C)  Carbohydrates and fats

(D)  Carbohydrates, fats and proteins

311. The limiting amino acid in wheat is

(A)  Leucine   

(B)  Lysine

(C)  Cysteine   

(D)  Methionine

312. The limiting amino acid in pulses is

(A)  Leucine   

(B)  Lysine

(C)  Tryptophan          

(D)  Methionine

313. Maize is poor in

(A)  Lysine

(B)  Methionine

(C)  Tryptophan

(D)  Lysine and tryptophan

314. The percentage of ingested protein/nitrogen absorbed into blood stream is known as

(A)  Net protein utilisation
(B)  Protein efficiency ratio

(C)  Digestibility coefficient

(D)  Biological value of protein

315. Biological value of a protein is

(A)  The percentage of ingested protein/nitrogen absorbed into circulation

(B)  The percentage of ingested protein/nitrogen in the body

(C)  The percentage of ingested protein utilised for protein synthesis in the body

(D)  The gain in body weight (gm) per gm of protein ingested

316. Net protein utilisation depends upon

(A)  Protein efficiency ratio
(B)  Digestibility coefficient

(C)  Digestibility coefficient and protein efficiency ratio

(D)  Digestibility coefficient and biological value

317. The gain in body weight (gm) per gm of protein ingested is known as

(A)  Net protein utilisation
(B)  Protein efficiency ratio

(C)  Digestibility coefficient

(D)  Biological value of protein

318. The following is considered as reference standard for comparing the nutritional quality of proteins:

(A)  Milk proteins       

(B)  Egg proteins

(C)  Meat proteins       

(D)  Fish proteins

319. Biological value of egg proteins is about

(A)       70 %   

(B)       80 %

(C)       86 %   

(D)       94 %

320. The following has the highest protein efficiency ratio:

(A)  Milk proteins       

(B)  Egg proteins

(C)  Meat proteins       

(D)  Fish proteins

321. The following has the lowest protein efficiency ratio:

(A)  Maize proteins     

(B)  Wheat proteins

(C)  Milk proteins       

(D)  Rice proteins

322. Protein content of egg is about

(A)       10%    

(B)       13%

(C)       16%    

(D)       20%

323. Protein content of meat is about

(A)       10%    

(B)       13%

(C)       16%    

(D)       20%

324. Protein content of rice is about

(A)       7%      

(B)       12%

(C)       15%    

(D)       20%

325. The calorific value of wheat is about

(A)       2.5 kcal/gm     

(B)       3.5 kcal/gm

(C)       4.5 kcal/gm     

(D)       5.5 kcal/gm

326. For vegetarians, pulses are an important source of

(A)  Carbohydrates     

(B)  Proteins

(C)  Fat           

(D)  Iron

327. The amino acids present in pulses can supplement the limiting amino acids of

(A)  Cereals    

(B)  Milk

(C)  Fish          

(D)  Nuts and beans

328. Milk is a good source of

(A)  Proteins, calcium and iron
(B)  Proteins, calcium and ascorbic acid

(C)  Proteins, lactose and retinol

(D)  Proteins, lactose and essential fatty acids

329. Milk is a good source of all of the following except

(A)  Essential amino acids

(B)  Vitamin C

(C)  Galactose

(D)  Calcium and phosphorous

330. Milk is poor in

(A)  Cholesterol          

(B)  Retinol

(C)  Calcium   

(D)  Iron

331. Egg is rich in all of the following except

(A)  Cholesterol

(B)  Saturated fatty acids

(C)  Ascorbic acid       

(D)  Calcium

332. A phosphoprotein present in egg is

(A)  Casein     

(B)  Albumin

(C)  Ovoglobulin         

(D)  Ovovitellin

333. Consumption of raw eggs can cause deficiency of

(A)  Calcium   

(B)  Lipoic acid

(C)  Biotin       

(D)  Vitamin A

334. Egg is poor in

(A)  Essential amino acids

(B)  Carbohydrates

(C)  Avidin

(D)  Biotin

335. Cholesterol is present in all the following except

(A)  Milk         

(B)  Fish

(C)  Egg white

(D)  Egg yolk

336. Meat is rich in all of the following except

(A)  Iron         

(B)  Fluorine

(C)  Copper     

(D)  Zinc

337. Kwashiorkor occurs when the diet is severely deficient in

(A)  Iron         

(B)  Calories

(C)  Proteins    

(D)  Essential fatty acids

338. Clinical features of Kwashiorkor include all of the following except

(A)  Mental retardation

(B)  Muscle wasting

(C)  Oedema   

(D)  Anaemia

339. Kwashiorkor usually occurs in

(A)  The post-weaning period

(B)  Pregnancy

(C)  Lactation

(D)  Old age

340. Marasmus occurs from deficient intake of

(A)  Essential amino acids
(B)  Essential fatty acids

(C)  Calories

(D)  Zinc

341. Marasmus differs from Kwashiorkor in the which of these following respect

(A)  Mental retardation occurs in kwashiorkor but not in marasmus

(B)  Growth is retarded in kwashiorkor but not in marasmus

(C) Muscle wasting occurs in marasmus but not kwashiorkor

(D)  Subcutaneous fat disappears in marasmus but not in kwashiorkor

342. Energy reserves of an average well-fed adult man are about

(A)       50,000 kcal     

(B)       100,000 kcal

(C)       200,000 kcal   

(D)       300,000 kcal

343. During starvation, the first reserve nutrient to be depleted is

(A) Glycogen  

(B) Proteins

(C) Triglycerides         

(D)  Cholesterol

344. Synthesis of the following enzymes is increased during starvation.

(A) Digestive enzymes
(B) Gluconeogenic enzymes

(C)  Urea cycle enzymes

(D) Glucokinase

345. In hypoparathyroidism

(A) Plasma calcium and inorganic phosphorous are low

(B) Plasma calcium and inorganic phosphorous are high

(C)  Plasma calcium is low and inorganic        phosphorous high

(D)  Plasma calcium is high and inorganic phosphorous low

346. The number of amino acid residues in calcitonin in

(A)       9         

(B)       32

(C)       51       

(D)       84

347. Calcitonin is synthesised in

(A)  Parathyroid glands

(B)  Thyroid gland

(C)  Pars intermedia of pituitary

(D)  Adrenal cortex

348. Plasma calcium is lowered by

(A)  Parathormone      

(B)  Calcitonin

(C)  Aldosterone         

(D)  Deoxycorticosterone

349.  α Cells of Islets of Langerhans secrete

(A)  Insulin     

(B)  Glucagon

(C)  Somatostatin        

(D)  Cholecystokinin

350. A/G ratio is

(A)  Strength of proteins
(B)  ratio of serum proteins

(C)  ratio of ceruloplasmin

(D)  None of these

351. Insulin is made up of

(A)  A single polypeptide chain having 51 amino acid residues

(B)  A single polypeptide chain having 84 amino acid residues

(C)  A-chain having 21 and B-chain having 30 amino acid residues

(D)  A-chain having 30 and B-chain having 21 amino acid residues

352. The number of amino acid residues in preproinsulin is

(A)       51       

(B)       84

(C)       109     

(D)       119

353. Pre-proinsulin contains a signal sequence having

(A)       9 amino acid residues

(B)       19 amino acid residues

(C)       27 amino acid residues

(D)       33 amino acid residues

354. The number of intra-chain disulphide bonds in pro-insulin:

(A)  One         

(B)  Two

(C)  Three       

(D)  Four

355. Pentagastrin is a

(A)  Naturally occurring form of gastrin

(B)  Inactive metabolite of gastrin

(C)  Active metabolite of gastrin

(D)  Synthetic form of gastrin

356. Secretion of gastrin is evoked by

(A)  Entry of food into stomach

(B)  Vagal stimulation

(C)  Lower aliphatic alcohols

(D)  All of these

357. Gastrin stimulates

(A)  Gastric motility    

(B)  Gastric secretion

(C)  Both (A) and (B)  

(D)  None of these

358. Secretin is made up of

(A)       17 amino acids           

(B)       27 amino acids

(C)       37 amino acids           

(D)       47 amino acids

359. Secretin causes all of the following except

(A)  Secretion of pancreatic juice

(B)  Secretion of bile

(C)  Inhibition of gastric secretion

(D)  Stimulation of intestinal motility

360. All of the following statements about cholecystokinin pancreozymin are true except

(A)  It is secreted by mucosa of small intestine
(B)  It stimulates secretion of pancreatic juice rich in enzymes

(C)  It stimulates contraction of gall bladder

(D)  It inhibits gastric motility

361. All of the following statements about pancreatic somatostain are true except

(A)  It is secreted by δ cells of islets of Langerhans

(B)  It stimulates the secretion of gastrin

(C)  It inhibits the secretion of secretin

(D)  It inhibits the secretion of cholecystokinin pancreozymin

362. Histidine is converted into histamine by

(A)  Carboxylation      

(B)  Decarboxylation

(C)  Methylation         

(D)  Hydroxylation

363. Histamine is synthesised in

(A)  Brain       

(B)  Mast cells

(C)  Basophils

(D)  All of these

364. Histamine causes all the following except

(A)  Stimulation of gastric secretion

(B)  Vasoconstriction

(C)  Pruritus

(D)  Increase in capillary permeability

365. H2-receptors are blocked by

(A)  Diphenhydramine

(B)  Mepayramine

(C)  Pyrilamine           

(D)  Cimetidine

366. Serotonin is synthesised from

(A)  Serine      

(B)  Phenylalanine

(C)  Tyrosine  

(D)  Tryptophan

367. All the following statements about serotonin are true except

(A)  It causes vasolidatation
(B)  It causes bronchoconstriction

(C)  It is metabolized by monoamine oxidase

(D)  Its metabolite is 5-hydroxyindole acetic acid

368. All the following statements about angiotensin are true except

(A)  Its precursor is an α2-globulin
(B)  Its active form is an octapeptide

(C)  It is a vasodilator

(D)  It increases the secretion of aldosterone

369. Methyl dopa decreases blood pressure by

(A)  Inhibiting the synthesis of catecholamines

(B)  Antagonising the action of aldosterone

(C)  Stimulating the release of renin

(D)  Inhibiting the breakdown of angiotensin

370. Binding of gamma-aminobutyric acid to its receptors in brain increases the permeability of cell membrane to

(A)  Cl-

(B)  Na+

(C)  K+            

(D)  Ca++

371. Binding of acetylcholine to its receptors increases the permeability of cell membrane to

(A)  Ca++         

(B)  Na+

(C)  K+            

(D)  Na+ and K+

372. All of the following are glycoproteins except

(A)  Collagen  

(B)  Albumin

(C)  Transferrin           

(D)  IgM

373. Sialic acids are present in

(A)  Proteoglycans      

(B)  Glycoproteins

(C)  Both (A) and (B)  

(D)  None of these

374. Hyaluronidase hydrolyses

(A)  Hyaluronic acid

(B)  Chondroitin sulphate

(C)  Heparin

(D)  Hyaluronic acid and chondroitin sulphate

375. The most abundant protein in bones is

(A)  Collagen type I
(B)  Collagen type II

(C)  Collagen type III

(D)  Non-collagen proteins

376. The most abundant collagen in cartilages is

(A)  Type I      

(B)  Type II

(C)  Type III   

(D)  Type IV

377. Collagen and elastin have the following similarity:

(A)  Both are triple helices

(B)  Both have hydroxyproline residues

(C)  Both have hydrolysine residues

(D)  Both are glycoproteins

378. Abnormal collagen structure is seen in all of the following except

(A)  I-cell disease

(B)  Osteogenesis imperfecta

(C)  Menke’s disease

(D)  Ehlers-Danlos sydrome

379. I-cell disease results from absence of the following from lysosomal enzymes:

(A)  Signal sequence
(B)  Mannose-6-phosphate

(C)  Sialic acid

(D)  A serine residue

380. In I-cell disease, lysosomal enzymes

(A)  Are not synthesised

(B)  Are inactive

(C)  Lack signal sequence

(D)  Cannot reach lysosomes

381. Renal glycosuria occurs due to

(A)  Increased filtration of glucose in glomeruli
(B)  Increased secretion of glucose by renal tubular cells

(C)  Decreased reabsorption of glucose by renal  tubular cells

(D)  Increased conversion of glycogen into glucose in tubular cells

382. Haematuria can occur in

(A)  Haemolytic anaemia

(B)  Mismatched blood transfusion

(C)  Yellow fever

(D)  Stone in urinary tract

383. Haematuria can occur in all of the following except

(A)  Acute glomerulonephritis

(B)  Cancer of urinary tract

(C)  Stone in urinary tract

(D)  Mismatched blood transfusion

384. Chyluria can be detected by addition of the following to the urine:

(A)  Sulphosalicylic acid

(B)  Nitric acid

(C)  Acetic anhydride

(D)  Chloroform

385. Normal range of serum urea is

(A)       0.6-1.5 mg/dl  

(B)       9-11 mg/dl

(C)       20-45 mg/dl    

(D)       60-100 mg/dl

386. Normal range of serum creatinine is

(A)       0.6-1.5 mg/dl  

(B)       9-11 mg/dl

(C)       20-45 mg/dl    

(D)       60-100 mg/dl

387. Standard urea clearance is

(A)       54 ml/min       

(B)       75 ml/min

(C)       110 ml/min     

(D)       130 ml/min

388. Maximum urea clearance is

(A)       54 ml/min       

(B)       75 ml/min

(C)       110 ml/min     

(D)       130 ml/min

389. Average creatinine clearance in an adult man is about

(A)       54 ml/min       

(B)       75 ml/min

(C)       110 ml/min     

(D)       130 ml/min

390. Inulin clearance in an average adult man is about

(A)       54 ml/min       

(B)       75 ml/min

(C)       110 ml/min     

(D)       130 ml/min

391. Among the following, a test of tubular  function is

(A)  Creatinine clearance

(B)  Inulin clearance

(C)  PAH clearance

(D)  PSP excretion test

392. A simple way to assess tubular function is to withhold food and water for 12 hours and, then, measure

(A)  Serum urea
(B)  Serum creatinine

(C)  Urine output in one hour

(D)  Specific gravity of urine

393. Among the following, the most sensitive indicator of glomerular function is

(A)  Serum urea

(B)  Serum creatinine

(C)  Urea clearance

(D)  Creatinine clearance

394. All the following statements about inulin are correct except

(A)  It is completely non-toxic

(B)  It is completely filtered by glomeruli

(C)  It is not reabsorbed by tubular cells

(D)  It is secreted by tubular cells

395. Non-protein nitrogenous substances in blood include all of the following except

(A)  Urea        

(B)  Uric acid

(C)  Creatinine            

(D)  Inositol

396. Non-protein nitrogenous substances in blood are raised in

(A)  Starvation

(B)  Liver damage

(C)  Renal failure

(D)  All of these

397. Creatinine clearance is deceased in

(A)  Acute tubular necrosis
(B)  Acute glomerulonephritis

(C)  Hypertension

(D)  Myopathies

398. Serum amylase is increased in

(A)  Acute parotitis     

(B)  Acute pancreatitis

(C)  Pancreatic cancer

(D)  All of these

399. Maximum rise in serum amylase occurs in

(A)  Acute parotitis

(B)  Acute pancreatitis

(C)  Chronic pancreatitis

(D)  Pancreatic cancer

 

Visit government jobs

No comments:

Post a Comment

problem related comment